Overview
Solartracker | Blueprint and explanation | English
Preamble
Creators note:
“Because I’m not familiar when it comes to english translation, I got help by Hallejohn for this guide.”
“With this guide, I do not just want to show you how to place your objects to build an efficient solar system, but also try to explain how to get there.
I hope that one or the other have a genius idea and create their own creations with different orientations.
For those who are only interested in the blueprint this one comes in the first place.”
Blueprints
Without limiter
2x Kit (Sensor)
5x Memory
5x I/O
4x Processor
With limiter
2x Kit (Sensor)
7x Memory
5x I/O
6x Processor
Vertical
The vertical orientation
- 1.a) Adaptation of sensor data
- 1.b) Information about sensor data
- 2.) Solar module determination
- 3.) Conversion degrees in percent
- 4.) Calculation
V 1.a) Adaptation of sensor data
1.a) Adaptation of sensor data
The sensor measures counterclockwise:
If the sun would rise exactly in the east in the morning,
stand right above us at noon and sink exactly in the West in the evening –
then, the sensor would output: 90 ° / 0 ° / -90 °.
But we need values from 0° to 180°. Accordingly, we simply calculate: 90 – [insert sensor data].
Example:
90 – 90° = 0°
90 – 0° = 90°
90 – (-90)° = 180°
V 1.b) Information about sensor data
1.b) Information about sensor data
The sun is not exactly above us at noon, but at a vertical angle towards the south.
On Mars, this is approximately 8°.
Since the sensor measures the vertical slope regardless of the direction of the compass, we only get values of 90 to 8 during the day and back to 90. No -90.
Only at night there are negative values possible.
Every shadow falls north, therefore we have a compass during the day.
V 2.) Determination the solar module
2.) Determination the solar module
The solar module can only be tilted by about 75 ° in each direction.
The entire area is thereby reduced from 180 ° to 150 °.
In the previous adjustment of the sensor data we used 75 instead of 90.
Example:
75 – 90° = -15°
75 – 0° = 75°
75 – (-90)° = 165°
Furthermore, the module is set in percent and not in degrees.
V 3.) Conversion degrees in percent
3.) Conversion degrees in percent
Since we read in degrees but write in percent, we have to convert something here.
Our solar module has a range from 0 ° to 150°.
0°= 0%;
150 ° = 100%.
So we divide 150 ÷ 100 and get: 1.5 ° = 1%.
For proof check still the sample: 50% x 1,5 ° = 75 °. All correct.
Alternative:
You can also calculate 100% / 150 °.
Then you get: 1 ° = 0,66666666666666666666666666666667% (That’s 31 sixes)
Again the proof check: 75 ° x 0,666666666666666666666666666667% = 50%
The accuracy depends on the number of decimal places displayed by your calculator.
V 4.) The calculation
4.) The calculation
We take the 75 from step 2 and subtract the incoming sensor values (S).
75-S
We divide the result by 1.5 from step 3.
(75-S) / 1.5 = X
That’s it.
A few Examples:
Sensor = 90°
(75 – 90°) / 1,5° = -10% < 0%
Sensor = 75°
(75 – 75°) / 1,5° = 0%
Sensor = 45°
(75 – 45°) / 1,5° = 20%
Sensor = 30°
(75 – 30°) / 1,5° = 30%
Sensor = 8°
(75 – 8°) / 1,5° = 44,666666666666666666666666666667% (29)
In the alternative variant, we do not divide by 1.5,
but multiply by 0.66666666666666666666666666667.
Therefore: (75-S) x 0,66666666666666666666666666666667 = X
Some more examples:
Sensor = 90°
(75 – 90°) x 0,66666666666666666666666666666667% = -10% < 0%
Sensor = 75°
(75 – 75°) x 0,66666666666666666666666666666667% = 0%
Sensor = 45°
(75 – 45°) x 0,66666666666666666666666666666667% = 20%
Sensor = 30°
(75 – 30°) x 0,66666666666666666666666666666667% = 30%
Sensor = 8°
(75 – 8°) x 0,66666666666666666666666666666667% = 44,666666666666666666666666666667%
Horizontal
- 1.) Sensor determination
- 2.) Solar module determination
- 3.) The calculation
H 1.) Sensor determination
1.) Sensor determination
The sensor measures counterclockwise.
Unlike vertical measurement, the values are bound to the orientation.
However, the solar module is written in a clockwise direction, which is why we need to adjust it.
The simplest variant is the sensor with the data connection facing west, to turn upside down.
As a result, the values can be written directly into the solar module, as a side effect we save chips.
The alternative is to work with the value 90, as with the vertical variant.
For this, the sensor must be placed to the top and with the data connection to the north.
So: 90 – [sensor].
Example:
90 – 90° = 0°
90 – 0° = 90°
90 – (-90)° = 180°
At some point, the sensors will certainly only output values in the event of actual light incidence, which is why this variant could be more durable.
H 2.) Solar module determination
2.) Solar module determination
When orienting the solar modules, the power connection is crucial.
There is the 90° position. (Clockwise)
Unless the power supply is facing south, further calculations are needed.
To avoid independent thinking, here are the values:
S = 0
E = + 90
N = + 180
W = – 90
H 3.) Calculation
3.) DCalculation
If the sensor is mounted upside down,
with the data jack facing west, and the solar panel is facing south,
no calculations are needed.
In the variant “sensor to the top,
data cable to the north” we take the 90 from point 1 and subtract the sensor data (S).
90 – p
To the result we add the values from point 2 (Y)
(90 – S) + Y = X
Example:
90 – 0° + 90(E) = 180°
90 – 90° + 90(E) = 90°
90 – 0° + 180 (N) = 270°
90 – 90° + 180 (N) = 180°
90 – 0 + (-90)(W) = 0°
90 – 90 + (-90)(W) = -90°
End
I hope I could help you with this guide.
Feel free to rate and comment.
Edit:
“Big thanks to Hallejohn, who helped me translating and making the english guide possible. =)”